ACKS, (GEERS
HECRS G KS Crear una imagen personalizada de Debian para el router BPI-R3

Si, en vez de instalar OpenWrt en el router Banana Pi BPI-R3, queremos bootearle un Debian, en un ordenador con Debian ya
instalado y ejecutdndose, seguimos estos pasos:

Instalamos los siguientes paquetes:
sudo apt-get -y install bc binfmt-support binutils-aarch64-linux-gnu bison build-essential crossbuild-essential-arm64

debootstrap flex device-tree-compiler git gcc-aarch64-linux-gnu gcc-arm-linux-gnueabihf libncurses5-dev libncursesw5-
dev libssl-dev make python3 python3-dev python3-pyelftools python3-setuptools gemu-user-static u-boot-tools

Clonamos el repositorio del kernel:

rm -rf /home/usuariox/debian-bpi-r3/linux

mkdir -p /home/usuariox/debian-bpi-r3 2> /dev/null

cd ~/debian-bpi-r3

git clone --depth 1 --branch "master" https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
cd linux

Creamos una configuracién personalizada del kernel:
make ARCH=arm64 CROSS COMPILE=aarch64-linux-gnu- menuconfig

e Vamos a «Plattform selection» y marcamos solamente «Mediatek SoC family».

Salvamos los cambios al archivo con nombre .config. Ahora, si ejecutamos:
1s ~/debian-bpi-r3/linux/arch/arm64/boot/dts/mediatek | grep "bpi-r3"

La salida serd algo asi:

mt7986a-bananapi-bpi-r3.dts
mt7986a-bananapi-bpi-r3-emmc.dtso
mt7986a-bananapi-bpi-r3-nand.dtso
mt7986a-bananapi-bpi-r3-nor.dtso
mt7986a-bananapi-bpi-r3-sd.dtso

Ahi vemos que en el Ultimo kernel existen los archivos DTS (Device Tree) correspondientes a la BananaPi BPI-R3.

e Los archivos .dts (Device Tree Source) son archivos de texto que describen la estructura de hardware del sistema.
Contienen informacién sobre los componentes de hardware, como CPUs, memoria, buses, dispositivos periféricos, etc.

e Los archivos .dtso (Device Tree Overlay Source) son sobreposiciones de Device Tree. Permiten definir cambios
adicionales que se aplican sobre un Device Tree base. Son Utiles para configurar hardware adicional o aplicar
modificaciones sin cambiar el archivo principal.

Nos faltarian los archivos dtb y dtbo:

e Los archivos .dtb (Device Tree Blob) son la versién compilada (binaria) de los archivos .dts.

e Los archivos .dtbo (Device Tree Blob Overlay) son la versién compilada de los archivos .dtso. Estos archivos binarios
pueden ser cargados en tiempo de ejecucién para aplicar las configuraciones adicionales.

...por ello pasaremos a la linea de ejecuciéon de compilacién del kernel el pardmetro dtbs. Entonces, compilamos el kernel
ejecutando:

make -j$(nproc) ARCH=arm64 CROSS COMPILE=aarch64-linux-gnu- Image dtbs modules

Utilizamos debootstrap para crear un sistema de archivos raiz de Debian:

hacks4geeks.com | 1

ACKS, (GEERS
HECRS G KS Crear una imagen personalizada de Debian para el router BPI-R3

cd ~/debian-bpi-r3
sudo debootstrap --arch arm64 bookworm rootfs http://deb.debian.org/debian

Esto creard una estructura basica de Debian en el directorio rootfs.

Configuramos el sistema de archivos raiz

sudo mount -o bind /dev /home/usuariox/debian-bpi-r3/rootfs/dev
sudo mount -o bind /sys /home/usuariox/debian-bpi-r3/rootfs/sys
sudo mount -o bind /proc /home/usuariox/debian-bpi-r3/rootfs/proc

sudo cp /usr/bin/gemu-aarch64-static /home/usuariox/debian-bpi-r3/rootfs/usr/bin/
sudo chroot /home/usuariox/debian-bpi-r3/rootfs

Dentro del chroot, configuramos los elementos basicos del sistema:

echo "bpi-r3" > /etc/hostname

cat <<EOF > /etc/apt/sources.list

deb http://deb.debian.org/debian bookworm main contrib non-free non-free-firmware

deb-src http://deb.debian.org/debian bookworm main contrib non-free non-free-firmware

deb http://deb.debian.org/debian-security/ bookworm-security main contrib non-free non-free-firmware
deb-src http://deb.debian.org/debian-security/ bookworm-security main contrib non-free non-free-firmware
deb http://deb.debian.org/debian bookworm-updates main contrib non-free non-free-firmware

deb-src http://deb.debian.org/debian bookworm-updates main contrib non-free non-free-firmware

EOF

apt-get update

apt-get -y install locales

apt-get -y install dialog

apt-get -y install sudo

dpkg-reconfigure locales

apt-get -y install linux-headers-$(uname -r)

apt-get -y install u-boot-tools

apt-get -y install initramfs-tools

exit

Copiamos el Kernel y los archivos .dtb al sistema de archivos raiz

sudo cp /home/usuariox/debian-bpi-r3/linux/arch/armé64/boot/Image /home/usuariox/debian-bpi-r3/rootfs/boot/
sudo cp /home/usuariox/debian-bpi-r3/linux/arch/armé4/boot/dts/mediatek/*bpi-r3*.dtb /home/usuariox/debian-bpi-
r3/rootfs/boot/

Preparamos los médulos, ejecutando:

cd /home/usuariox/debian-bpi-r3/linux/
sudo make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- modules_install INSTALL_MOD_PATH=/home/usuariox/debian-bpi-
r3/rootfs

Configuramos el bootloader para que pueda arrancar desde la SD ejecutando:

rm -rf /home/usuariox/debian-bpi-r3/u-boot 2> /dev/null

mkdir -p /home/usuariox/debian-bpi-r3 2> /dev/null

cd /home/usuariox/debian-bpi-r3

git clone --depth 1 --branch "master" https://source.denx.de/u-boot/u-boot.git/
cd u-boot

make -j$(nproc) CROSS_COMPILE=aarch64-linux-gnu- mt7986a_bpir3_sd_defconfig
make -j$(nproc) CROSS COMPILE=aarch64-linux-gnu-

Creamos una nueva tabla de particiones en la tarjeta MicroSD, ejecutando:

hacks4geeks.com | 2

ACKS, (GEERS
HECRS G KS Crear una imagen personalizada de Debian para el router BPI-R3

sudo parted -s /dev/mmcblk® mklabel gpt
Instalamos el bootloader en la tarjeta MicroSD ejecutando:

sudo dd if=/home/usuariox/debian-bpi-r3/u-boot/u-boot.bin of=/dev/mmcblk® bs=512 seek=2

sudo dd if=/home/usuariox/debian-bpi-r3/u-boot/u-boot.bin of=/dev/sdg bs=512 seek=2

Creamos la particién ext4 en el espacio restante de la tarjeta MicroSD, iniciando desde 1 MiB (asi dejamos sitio para el
bootloader), ejecutando:

sudo parted -s /dev/sdg mkpart primary ext4 1MiB 100%
Formateamos la particién, ejecutando:
sudo mkfs.ext4 /dev/sdbl

Copiar Debian y el bootloader a la particién:

sudo mkdir -p /mnt/debianbpir3/

sudo mount /dev/sdbl /mnt/debianbpir3/

sudo cp -R /home/usuariox/debian-bpi-r3/rootfs/* /mnt/debianbpir3/
sudo cp path/to/zImage /mnt/debianbpir3/boot/

sudo cp path/to/dtb /mnt/debianbpir3/boot/

sudo cp path/to/boot.scr /mnt/debianbpir3/boot/

sudo umount /mnt/debianbpir3/

sudo parted -s /dev/sdb mkpart EFl ext4 1MiB 1024MiB
sudo parted -s /dev/sdb mkpart OpenWrt ext4 1025MiB 28000MiB
sudo parted -s /dev/sdb mkpart Intercambio ext4 28001MiB 100%

Formatear la particién para EFI como fat32

sudo mkfs -t vfat -F 32 -n EFI $vPrimerDisco»1”

Formatear la particiéon para OpenWrt como ext4
sudo mkfs -t ext4 -L OpenWrt $vPrimerDisco»2”

Formatear la particién para Intercambio como swap
sudo mkswap -L Intercambio $vPrimerDisco»3”

4)

echo «»

echo » Marcando la particién EFI como esp...»
echo «»

sudo parted -s $vPrimerDisco set 1 esp on

Dentro de fdisk, realiza los siguientes pasos:
Crear una nueva particién primaria:

Elimina todas las particiones existentes (opcional pero recomendado).
Crea una nueva particién primaria (nueva particién 1).

hacks4geeks.com | 3

ACKS, (GEERS
HECRS G KS Crear una imagen personalizada de Debian para el router BPI-R3

Acepta los valores por defecto, lo que colocard la particiéon inmediatamente después del area ocupada por U-Boot.
Establece el tipo de sistema de archivos en Linux (83).
Escribe los cambios y sal.

Formatear la particién ext4:
sudo mkfs.ext4 /dev/sdX1
Copiamos el sistema operativo Debian

Monta la particién ext4 y copia el sistema operativo Debian, incluyendo el kernel (zimage o Image), el archivo de dispositivo
(.dtb), y otros archivos necesarios para el arranque:

sudo mount /dev/sdX1 /mnt

Copia los archivos necesarios a /mnt
sudo cp -R path/to/debian/rootfs /mnt/
sudo cp path/to/zimage /mnt/boot/
sudo cp path/to/dtb /mnt/boot/

sudo cp path/to/boot.scr /mnt/boot/
sudo umount /mnt

hacks4geeks.com | 4

HACKS, GECKS b

Crear una imagen personalizada de Debian para el router BPI-R3

Creamos las particiones y formatear la tarjeta, ejecutando:

sudo fdisk /dev/sdX

Dentro de fdisk:

n (crear nueva particién)

p (primaria)

1 (nimero de particién)

<ENTER> (usar sector por defecto)
+100M (tamario de la particién)

n (crear nueva particién)

p (primaria)

2 (nUmero de particién)

<ENTER> (usar sector por defecto)
<ENTER> (usar el tamafio restante)
t (cambiar el tipo de la particién)

1 (seleccionar la particién 1)

c (tipo de particiéon FAT32)

w (escribir la tabla de particiones y salir)

Formatear las particiones

sudo mkfs.vfat /dev/sdX1

sudo mkfs.ext4 /dev/sdX2

7. Copiar los Archivos al Sistema de Archivos
Monta las particiones y copia los archivos:

bash

sudo mount /dev/sdX1 /mnt

sudo cp -r BPI-R3-bsp/output/100MB/BPI-BOOT/* /mnt/

sudo umount /mnt
sudo mount /dev/sdX2 /mnt
sudo cp -r rootfs/* /mnt/

sudo umount /mnt

8. Configurar el Arranque

Edita los archivos de configuracién de U-Boot en /mnt/ para que apunten al kernel y sistema de archivos correctos. Por ejemplo,
asegurate de que el boot.cmd (o boot.scr) esté configurado para cargar el kernel y rootfs desde las particiones correctas.

9. Finalizar y Probar

Desmonta todas las particiones, retira la tarjeta SD e insértala en tu BPI-R3. Conéctate a través de la consola serial para verificar

el proceso de arranque.
Resumen

Prepara el entorno de construccién.
Descarga y compila el kernel.

hacks4geeks.com | 5

HACKS, (GEERS 2

Crea el sistema de archivos raiz de Debian.
Configura el sistema de archivos raiz.
Copia el kernel y los médulos.

Configura el bootloader.

Crea y formatea las particiones de la tarjeta SD.

Copia los archivos al sistema de archivos.
Configura el arranque.
Finaliza y prueba el arranque en el BPI-R3.

Crear una imagen personalizada de Debian para el router BPI-R3

Siguiendo estos pasos, deberias poder crear una imagen de Debian oficial que pueda arrancar correctamente en tu router BPI-

R3.

hacks4geeks.com | 6

https://www.euskalhack.org/securitycongress/

